Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbes Infect ; : 105340, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663721

RESUMO

Our developed cell division-specific 'centrin' gene deleted Leishmania donovani (LdCen1-/-) the causative parasite of the fatal visceral-leishmaniasis (VL), exhibits a selective growth arrest at the intracellular stage and is anticipated as a live attenuated vaccine candidate against VL. LdCen1-/- immunization in animals has shown increased IFN-γ secreting CD4+ and CD8+ T cells along with protection conferred by a protective proinflammatory immune response. A label-free proteomics approach has been employed to understand the physiology of infection and predict disease interceptors during Leishmania-host interactions. Proteomic modulation after infection of human macrophage cell lines suggested elevated annexin A6, implying involvement in various biological processes such as membrane repair, transport, actin dynamics, cell proliferation, survival, differentiation, and inflammation, thereby potentiating its immunological protective capacity. Additionally, S100A8 and S100A9 proteins, known for maintaining homeostatic balance in regulating the inflammatory response, have been upregulated after infection. The inhibitory clade of serpins, known to inhibit cysteine proteases (CPs), was upregulated in host cells after 48 h of infection. This is reflected in the diminished expression of CPs in the parasites during infection. Such proteome analysis confirms LdCen1-/- efficacy as a vaccine candidate and predicts potential markers in future vaccine development strategies against infectious diseases.

2.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36309472

RESUMO

The intracellular viral, bacterial, or parasitic pathogens evade the host immune challenges to propagate and cause fatal diseases. The microbes overpower host immunity at various levels including during entry into host cells, phagosome formation, phagosome maturation, phagosome-lysosome fusion forming phagolysosomes, acidification of phagolysosomes, and at times after escape into the cytosol. Phagolysosome is the final organelle in the phagocyte with sophisticated mechanisms to degrade the pathogens. The immune evasion strategies by the pathogens include the arrest of host cell apoptosis, decrease in reactive oxygen species, the elevation of Th2 anti-inflammatory response, avoidance of autophagy and antigen cross-presentation pathways, and escape from phagolysosomal killing. Since the phagolysosome organelle in relation to infection/cure is seldom discussed in the literature, we summarize here the common host as well as pathogen targets manipulated or utilized by the pathogens established in phagosomes and phagolysosomes, to hijack the host immune system for their benefit. These common molecules or pathways can be broad-spectrum therapeutic targets for drug development for intervention against infectious diseases caused by different intracellular pathogens.


Assuntos
Doenças Transmissíveis , Evasão da Resposta Imune , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Autofagia , Doenças Transmissíveis/metabolismo
3.
Curr Genet ; 68(1): 15-25, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34480234

RESUMO

No effective vaccine is available for any parasitic disease. The treatment to those is solely dependent on chemotherapy, which is always threatened due to development of drug resistance in bugs. This warrants identification of new drug targets. Here, we discuss Nucleoside diphosphate kinases (NDKs) of pathogens that alter host's intra and extracellular environment, as novel drug targets to simultaneously tackle multiple pathogens. NDKs having diverse functions, are highly conserved among prokaryotes and eukaryotes (the mammal NDKs are called NMEs [non-metastatic enzymes]). However, NDKs and NMEs have been separately analysed in the past for their structure and functions. The role of NDKs of pathogen in modulation of inflammation, phagocytosis, apoptosis, and ROS generation in host is known. Conversely, its combined contribution in host-pathogen interaction has not been studied yet. Through the sequence and domain analysis, we found that NDKs can be classified in two groups. One group comprised NMEs 1-4 and few NDKs of select essential protozoan parasites and the bacterium Mycobacterium tuberculosis. The other group included NME7 and the other NDKs of those parasites, posing challenges in the development of drugs specifically targeting pathogen NDKs, without affecting NME7. However, common drugs targeting group 2 NDKs of pathogens can be designed, as NME7 of group 2 is expressed only in ciliated host cells. This review thus analyses comparatively for the first time the structures and functions of human NMEs and pathogen NDKs and predicts the possibilities of NDKs as drug targets. In addition, pathogen NDKs have been now provided a nomenclature in alignment with the NMEs of humans.


Assuntos
Mycobacterium tuberculosis , Núcleosídeo-Difosfato Quinase , Animais , Apoptose , Interações Hospedeiro-Patógeno/genética , Humanos , Mycobacterium tuberculosis/genética , Núcleosídeo-Difosfato Quinase/genética
4.
Front Oncol ; 11: 731323, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631562

RESUMO

Tumor cells require signaling and close interaction with their microenvironment for their survival and proliferation. In the recent years, Mast cells have earned a greater importance for their presence and role in cancers. It is known that mast cells are attracted towards tumor microenvironment by secreted soluble chemotactic factors. Mast cells seem to exert a pro-tumorigenic role in hematological malignancies with a few exceptions where they showed anti-cancerous role. This dual role of mast cells in tumor growth and survival may be dependent on the intrinsic characteristics of the particular tumor, differences in tumor microenvironment according to tumor type, and the interactions and heterogeneity of mediators released by mast cells in the tumor microenvironment. In many studies, Mast cells and their mediators have been shown to affect tumor survival and growth, prognosis, inflammation, tumor vascularization and angiogenesis. Modulating mast cell accumulation, viability, activity and mediator release patterns may thus be important in controlling these malignancies. In this review, we emphasize on the role of mast cells in lymphoid malignancies and discuss strategies for targeting and steering mast cells or their mediators as a potential therapeutic approach for the treatment of these malignancies.

5.
Cell Immunol ; 365: 104380, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34049012

RESUMO

The early interactions between the vaccine Mycobacterium bovis Bacillus Calmette Guerin (BCG) and host peripheral innate immune cells like Mast cells (MCs) may pave the way for generating appropriate protective innate and adaptive immune responses. Mice on administration of BCG by intratracheal instillation showed a massive increase in MC numbers in the infected lung. In vitro co-culture of BCG and rodent Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of BCG. RBL-2H3 MCs were able to phagocytose BCG, take up BCG-derived antigens by macropinocytosis, generate Reactive Oxygen Species (ROS) and degranulate. Further, a few MCs died and released MC extracellular traps (MCETs) having DNA, histones and tryptase to trap BCG. This study highlights the multi-pronged effector responses of MCs on encountering BCG. These responses or their evasion may lead to success or failure of BCG vaccine to provide long term immunity to infections.


Assuntos
Vacina BCG/imunologia , Armadilhas Extracelulares/metabolismo , Pulmão/imunologia , Mastócitos/imunologia , Mycobacterium bovis/imunologia , Animais , Linhagem Celular , Técnicas de Cocultura , Humanos , Imunidade Inata , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Ratos , Espécies Reativas de Oxigênio/metabolismo , Triptases/metabolismo
6.
Front Oncol ; 9: 1280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824856

RESUMO

Cancer microenvironment is complex and consists of various immune cells. There is evidence for mast cell (MC) infiltration of tumors, but their role thereof is poorly understood. In this study, we explored the effects of mast cell and their mediators on the growth of hematological cancer cells. The affect is demonstrated using RBL-2H3 MCs, and YAC-1, EL4 and L1210 as hematological cancer cell lines. Direct contact with MCs or stimulation by their mediators caused growth inhibition of YAC-1 cells, growth enhancement of EL4 cells and no change in growth of L1210 cells. This effect was confirmed by cancer cell recovery, cell viability, mitochondrial health, and cell cycle analysis. MCs showed mediator release in direct contact with tumor cells. MC mediators' treatment to YAC-1 and EL4 yielded exactly opposite modulations of survival markers, Survivin and COX-2 and apoptosis markers, Caspase-3, Bcl-2, in the two cell lines. Histamine being an important MC mediator, effect of histamine on cell recovery, survival markers and expression of various histamine receptors and their modulation in cancer cells was studied. Again, YAC-1 and EL4 cells showed contrary histamine receptor expression modulation in response to MC mediators. Histamine receptor antagonist co-treatment with MC mediators to the cancer cells suggested a major involvement of H2 and H4 receptor in growth inhibition in YAC-1 cells, and contribution of H1, H2, and H4 receptors in cell growth enhancement in EL4 cells. L1210 showed changes in the histamine receptors' expression but no effect on treatment with receptor antagonists. It can be concluded that anti-cancerous action of MCs or their mediators may include direct growth inhibition, but their role may differ depending on the tumor.

7.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1618-1633, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31260699

RESUMO

Synaptosomal-associated protein of 23 kDa (SNAP-23) plays an important role during regulated exocytosis of various inflammatory mediators, stored in secretory granules, from mast cells in response to physiological triggers. It is however synthesized as a soluble protein, and the mechanisms by which free SNAP-23 gets peripherally associated with membrane for the regulation of exocytosis, are poorly defined. SNAP-23 contains a hydrophobic domain with five closely spaced cysteines which get palmitoylated, and we show that SNAP-23 cysteine mutants show differential membrane association when transfected in rat basophilic leukemia (RBL) mast cells. SNAP-23 Cys- mutant, devoid of all five cysteines, and SNAP-23 P119A (proline to alanine) mutant, that likely interferes with palmitoylation of SNAP-23 by palmitoyl transferases are completely cytosolic. Mutating specific cysteines (Cys; C) to leucine or phenylalanine (L or F; retains hydrophobicity but lacks palmitoylation) partially decreases the membrane association of SNAP-23 which is further hampered by alanine (A; has lesser hydrophobicity, and lacks palmitoylation) mutation at C79, C80 or C83 position. Cloning a transmembrane domain MDR31-145 from multidrug resistance protein into SNAP-23 Cys- mutant is able to partially restore its membrane association. Regulated exocytosis studies using co-transfected human growth hormone (hGH) secretion reporter plasmid revealed that overexpression of SNAP-23 Cys- and P119A mutants significantly inhibits the overall extent of exocytosis from RBL mast cells, whereas expression of SNAP-23 Cys--MDR31-145 fusion protein is able to restore exocytosis. These results establish that the cysteine-rich domain of SNAP-23 regulates its membrane association and thereby also regulates exocytosis from mast cells.


Assuntos
Cisteína/química , Exocitose/fisiologia , Mastócitos/metabolismo , Proteínas de Transporte Vesicular/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Linhagem Celular , Cisteína/genética , Hormônio do Crescimento Humano , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Mutação , Engenharia de Proteínas , Ratos , Análise de Sequência de Proteína , Transfecção
8.
Cell Immunol ; 344: 103944, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31213284

RESUMO

Allergic diseases are increasing worldwide. Allergen and IgE dependent mast cell (MC) activation is the major initiator of these clinical symptoms. During this study, the effect of multiple exposures to the same allergen, on MC degranulation was studied. First, MC recovery in terms of surface expression of high affinity receptor FcεRI, and granule content after a primary allergen challenge was confirmed. Overall, previous exposure of MCs to allergen challenge led to a significant reduction in pre-stored mediator release during the secondary challenge at various time points and with various doses of allergen in vitro. The dampened response was not due to any defects in very early steps in signalling involving FcεRI activation. Inhibition of dampening response during secondary challenge by various inhibitors like wortmannin, tranylcypromine and pargyline, indicated the involvement of PI3K signalling and chromatin modifications. Our study provides insight into new therapeutic avenues for treating allergic disorders targeting MCs.


Assuntos
Alérgenos/imunologia , Epigênese Genética , Hipersensibilidade/imunologia , Mastócitos/imunologia , Receptores de IgE/imunologia , Transdução de Sinais , Animais , Células da Medula Óssea/imunologia , Degranulação Celular , Linhagem Celular Tumoral , Relação Dose-Resposta Imunológica , Histonas/metabolismo , Hipersensibilidade/genética , Tolerância Imunológica , Mastócitos/ultraestrutura , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinase/metabolismo , Ratos , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Sci Rep ; 9(1): 8508, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186458

RESUMO

Glycosylphosphatidylinositol (GPI)-anchored proteins are important for virulence of many pathogenic organisms including the human fungal pathogen, Candida albicans. GPI biosynthesis is initiated by a multi-subunit enzyme, GPI-N-acetylglucosaminyltransferase (GPI-GnT). We showed previously that two GPI-GnT subunits, encoded by CaGPI2 and CaGPI19, are mutually repressive. CaGPI19 also co-regulates CaERG11, the target of azoles while CaGPI2 controls Ras signaling and hyphal morphogenesis. Here, we investigated the role of a third subunit. We show that CaGpi15 is functionally homologous to Saccharomyces cerevisiae Gpi15. CaGPI15 is a master activator of CaGPI2 and CaGPI19. Hence, CaGPI15 mutants are azole-sensitive and hypofilamentous. Altering CaGPI19 or CaGPI2 expression in CaGPI15 mutant can elicit alterations in azole sensitivity via CaERG11 expression or hyphal morphogenesis, respectively. Thus, CaGPI2 and CaGPI19 function downstream of CaGPI15. One mode of regulation is via H3 acetylation of the respective GPI-GnT gene promoters by Rtt109. Azole sensitivity of GPI-GnT mutants is also due to decreased H3 acetylation at the CaERG11 promoter by Rtt109. Using double heterozygous mutants, we also show that CaGPI2 and CaGPI19 can independently activate CaGPI15. CaGPI15 mutant is more susceptible to killing by macrophages and epithelial cells and has reduced ability to damage either of these cell lines relative to the wild type strain, suggesting that it is attenuated in virulence.


Assuntos
Azóis/farmacologia , Vias Biossintéticas , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Subunidades Proteicas/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Linhagem Celular , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromossomos Fúngicos/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos , Heterozigoto , Hifas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Mutação/genética , Fagocitose/efeitos dos fármacos , Fenótipo , Subunidades Proteicas/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Virulência/efeitos dos fármacos
10.
Immunol Lett ; 199: 23-35, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29635001

RESUMO

Anemia, inflammation, and oxidative stress are interconnected. Erythrocytes are continuously exposed to oxidative stress, normally and during inflammatory diseases. Systemic mastocytosis and genetic depletion of mast cells affect anemia. In the present study, a direct role for mast cells in clearance of erythrocytes was explored. We show, for the first time, direct phagocytosis of opsonized as well as oxidatively damaged erythrocytes in vitro by mast cell lines, bone marrow derived mast cells (BMMCs) and in vivo by murine peritoneal mast cells. Also, activated mast cells, as may be present in inflammatory conditions, showed a significantly higher uptake of oxidatively damaged erythrocytes than resting mast cells. This suggests the involvement of mast cells in erythrocyte clearance during oxidative stress or inflammatory disorders. Partial inhibition of phagocytosis by various inhibitors indicated that this process may be controlled by several pathways. Our study provides important evidence for a scavenging role for mast cells in anemia due to inflammation and oxidative stress.


Assuntos
Eritrócitos/imunologia , Mastócitos/imunologia , Estresse Oxidativo/imunologia , Fagocitose/imunologia , Anemia/imunologia , Animais , Linhagem Celular Tumoral , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/efeitos dos fármacos
11.
PLoS One ; 13(12): e0210116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596774

RESUMO

Presentation of a prototype lipid antigen α-Galactosylceramide (αGC) was examined on primary epithelial cells derived from mouse lungs and on bronchoalveolar lavage (BAL) cells that essentially comprise alveolar macrophages. Presence of CD1d molecules coupled to αGC was demonstrated on both types of cells pre-treated with αGC, suggesting that both cell types are equipped to present lipid antigens. Internalization of Mycobacterium bovis Bacillus Calmette-Guérin (BCG: a prototype pathogen), a pre-requisite to the processing and presentation of protein as well as lipid antigens, was clearly demonstrated in primary lung epithelial (PLE) cells as well as BAL cells. Both PLE and BAL cells expressed CD1d molecule and a significant up-regulation of its expression occurred upon infection of these cells with BCG. Besides CD1d, the expression of other important molecules that participate in lipid antigen presentation pathway (i.e. microsomal triglyceride transfer protein (MTTP), scavenger receptor B1 (SR-B1) and Saposin) was also significantly upregulated in PLE and BAL cells upon BCG infection. In situ up-regulation of CD1d expression on lung epithelial cells was also demonstrated in the lungs of mice exposed intra-tracheally to BCG. Taken together these results suggest that lung epithelial cells may have the ability to present lipid antigens and this pathway seems to get significantly upregulated in response to BCG infection.


Assuntos
Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Antígenos CD1d/imunologia , Células Epiteliais/imunologia , Galactosilceramidas/imunologia , Pulmão/imunologia , Mycobacterium bovis/imunologia , Mucosa Respiratória/imunologia , Animais , Proteínas de Transporte/imunologia , Células Epiteliais/citologia , Pulmão/citologia , Camundongos , Mucosa Respiratória/citologia , Receptores Depuradores Classe B/imunologia
12.
Sci Rep ; 7(1): 13240, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038500

RESUMO

Mast Cells (MCs) are one of the first immune cells encountered by invading pathogens. Their presence in large numbers in the superficial dermis, where Leishmania is encountered, suggests that they may play a critical role in immune responses to Leishmania. In this study the interactions of Leishmania donovani, the causative agent of visceral Leishmaniasis, and Leishmania tropica, the causative agent of cutaneous Leishmaniasis with MCs were studied. Co-culture of Leishmania with Peritoneal Mast Cells (PMCs) from BALB/c mice and Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of L. tropica and to a lesser extent of L. donovani. Also, while there was significant uptake of L. tropica by MCs, L. donovani was not phagocytosed. There was significant generation of Reactive Oxygen Species (ROS) by MCs on co-culture with these species of Leishmania which may contribute to their clearance. Interactions of MCs with Leishmania led to generation of MC extracellular traps comprising of DNA, histones and tryptase probably to ensnare these pathogens. These results clearly establish that MCs may contribute to host defences to Leishmania in a differential manner, by actively taking up these pathogens, and also by mounting effector responses for their clearance by extracellular means.


Assuntos
Leishmania donovani/imunologia , Leishmania tropica/imunologia , Mastócitos/imunologia , Fagocitose , Animais , Catalase/metabolismo , Morte Celular , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Feminino , Histonas/metabolismo , Mastócitos/metabolismo , Camundongos Endogâmicos BALB C , Ratos , Espécies Reativas de Oxigênio/metabolismo , Triptases/metabolismo
13.
Biol Open ; 6(9): 1257-1269, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28784843

RESUMO

Upon allergen challenge, mast cells (MCs) respond by releasing pre-stored mediators from their secretory granules by the transient mechanism of porosome-mediated cell secretion. The target SNARE SNAP-23 has been shown to be important for MC exocytosis, and our previous studies revealed the presence of one basal (Thr102) and two induced (Ser95 and Ser120) phosphorylation sites in its linker region. To study the role of SNAP-23 phosphorylation in the regulation of exocytosis, green fluorescence protein-tagged wild-type SNAP-23 (GFP-SNAP-23) and its phosphorylation mutants were transfected into rat basophilic leukemia (RBL-2H3) MCs. Studies on GFP-SNAP-23 transfected MCs revealed some dynamic changes in SNAP-23 membrane association. SNAP-23 was associated with plasma membrane in resting MCs, however, on activation a portion of it translocated to cytosol and internal membranes. These internal locations were secretory granule membranes. This dynamic change in the membrane association of SNAP-23 in MCs may be important for mediating internal granule-granule fusions in compound exocytosis. Further studies with SNAP-23 phosphorylation mutants revealed an important role for the phosphorylation at Thr102 in its initial membrane association, and of induced phosphorylation at Ser95 and Ser120 in its internal membrane association, during MC exocytosis.

14.
J Immunotoxicol ; 13(5): 758-65, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27416475

RESUMO

The interaction of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNT) with NK cells undergoing activation was examined. Exposure to AF-SWCNT during NK activation in vitro by interleukin (IL)-2, and in vivo by Poly(I:C) significantly lowered cytotoxic activity generated against YAC-1 tumor cells. Recoveries of spleen NK1.1(+) cells as well as the activated subset of NK cells (NK1.1(+)CD69(+) cells) were significantly reduced by the AF-SWCNT exposure. The proportion of apoptotic NK cells (NK1.1(+) phosphatidylserine(+)) in the spleen cell preparations activated in vitro was also significantly elevated. Expression levels of CD107a [for assessing NK cell degranulation] as well as of FasL marker [mediating non-secretory pathway of NK cell killing] were significantly lower in cells exposed to AF-SWCNT during the activation phase. Intracellular levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the cells were also significantly reduced. Fluorescent AF-SWCNT (FAF-SWCNT) were internalized by the NK cells and uptake was significantly greater in activated cells. Confocal microscopy indicated the internalized FAF-SWCNT were localized to the cytoplasm of the NK cells. These results indicated that AF-SWCNT were internalized by NK cells and caused a general down-regulation of a variety of parameters associated with NK cell cytotoxicity and other cellular functions.


Assuntos
Células Matadoras Naturais/imunologia , Linfoma/imunologia , Nanotubos de Carbono , Animais , Apoptose , Degranulação Celular , Linhagem Celular Tumoral , Citoplasma/metabolismo , Citotoxicidade Imunológica , Regulação para Baixo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Ativação Linfocitária , Camundongos , Nanotubos de Carbono/estatística & dados numéricos , Neoplasias Experimentais , Poli I-C/imunologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Toxicol In Vitro ; 29(6): 1275-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25448806

RESUMO

Effect of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNTs) was examined on lipid antigen presentation through CD1d pathway on three cell lines, LA4, MHS, and JAWSII used as prototype antigen presenting cells (APCs). CD1d molecule was expressed on 80-90% MHS (prototype macrophages) and JAWSII (prototype dendritic cells) cells whereas <5% LA4 cells (lung epithelial cells, non-classical APCs) expressed CD1d. Treatment with AF-SWCNTs but not with pristine SWCNTs resulted in a significant decline in the level of CD1d mRNA as well as mRNA levels of some other intracellular proteins involved in lipid antigen presentation pathway (MTP, ApoE, prosaposin, SR-BI and LDLr). Lipid antigen presentation was assessed by first incubating the cells with a prototype lipid antigen (α-Glactosylceramide or αGC) and then staining with L363 monoclonal antibody that detects αGC bound to CD1d molecule. While 100% MHS and JAWSII cells presented αGC, only 20% LA4 cells presented the CD1d antigen. Treatment with AF-SWCNTs resulted in a 30-40% decrease in αGC antigen presentation in all three cell lines. These results show that AF-SWCNT treatment down regulated the lipid antigen presentation pathway in all three cell lines and significantly lowered the ability of these cell lines to present αGC antigen.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Antígenos CD1d/imunologia , Células Dendríticas/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanotubos de Carbono , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Galactosilceramidas/imunologia , Macrófagos/imunologia , Camundongos
16.
Proc Natl Acad Sci U S A ; 105(7): 2580-5, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18250339

RESUMO

Mast cells degranulate and release the contents of intracellular secretory granules in response to the cross-linking of FcepsilonRI by multivalent antigens. These granules contain a variety of biologically active inflammatory mediators; however, it is not clear whether these granules are homogenous or whether there is heterogeneity within the secretory granule population in mast cells. By using genetically altered mice lacking specific vesicle-associated SNARE membrane fusion proteins, we found that VAMP-8-deficient mast cells exhibited defects in FcepsilonRI-regulated exocytosis, whereas synaptobrevin 2- or VAMP-3-deficient mast cells did not. Surprisingly, the defect in secretion in VAMP-8-deficient mice was limited to the subpopulation of mast cell secretory granules containing serotonin and cathepsin D, whereas regulated exocytosis of secretory granules containing histamine and TNF-alpha was normal. Confocal microscopy confirmed that serotonin and histamine were present in distinct intracellular granules and that most serotonin-containing granules were VAMP-8-positive. Thus, this study demonstrates that mast cells do indeed possess distinct subsets of secretory granules and that these subsets use different SNARE isoforms for exocytosis.


Assuntos
Exocitose , Mastócitos/metabolismo , Proteínas SNARE/metabolismo , Vesículas Secretórias/metabolismo , Animais , Catepsina D/metabolismo , Células Cultivadas , Deleção de Genes , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas SNARE/deficiência , Proteínas SNARE/genética , Serotonina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Traffic ; 7(11): 1482-94, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16984405

RESUMO

Lipid rafts are membrane microdomains rich in cholesterol and glycosphingolipids that have been implicated in the regulation of intracellular protein trafficking. During exocytosis, a class of proteins termed SNAREs mediate secretory granule-plasma membrane fusion. To investigate the role of lipid rafts in secretory granule exocytosis, we examined the raft association of SNARE proteins and SNARE complexes in rat basophilic leukemia (RBL) mast cells. The SNARE protein SNAP-23 co-localized with a lipid raft marker and was present in detergent-insoluble lipid raft microdomains in RBL cells. By contrast, only small amounts (<20%) of the plasma membrane SNARE syntaxin 4 or the granule-associated SNARE vesicle-associated membrane protein (VAMP)-2 were present in these microdomains. Despite this, essentially all syntaxin 4 and most of VAMP-2 in these rafts were present in SNARE complexes containing SNAP-23, while essentially none of these complexes were present in nonraft membranes. Whereas SNAP-23 is membrane anchored by palmitoylation, the association of the transmembrane protein syntaxin 4 with lipid rafts was because of its binding to SNAP-23. After stimulating mast cells exocytosis, the amount of syntaxin 4 and VAMP-2 present in rafts increased twofold, and these proteins were now present in raft-associated phospho-SNAP-23/syntaxin 4/VAMP-2 complexes, revealing differential association of SNARE fusion complexes during the process of regulated exocytosis.


Assuntos
Exocitose/fisiologia , Mastócitos/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas SNARE/metabolismo , Animais , Toxina da Cólera/metabolismo , Dinitrofenóis/imunologia , Dinitrofenóis/farmacologia , Exocitose/efeitos dos fármacos , Gangliosidose GM1/metabolismo , Células HeLa , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/farmacologia , Mastócitos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Proteínas Qa-SNARE/metabolismo , Ratos , Receptores de IgE/agonistas , Receptores de IgE/metabolismo , Proteínas SNARE/genética , Soroalbumina Bovina/imunologia , Soroalbumina Bovina/farmacologia , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Transfecção , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
18.
J Biol Chem ; 280(8): 6610-20, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15611044

RESUMO

Regulated exocytosis is a process in which a physiological trigger initiates the translocation, docking, and fusion of secretory granules with the plasma membrane. A class of proteins termed SNAREs (including SNAP-23, syntaxins, and VAMPs) are known regulators of secretory granule/plasma membrane fusion events. We have investigated the molecular mechanisms of regulated exocytosis in mast cells and find that SNAP-23 is phosphorylated when rat basophilic leukemia mast cells are triggered to degranulate. The kinetics of SNAP-23 phosphorylation mirror the kinetics of exocytosis. We have identified amino acid residues Ser(95) and Ser(120) as the major phosphorylation sites in SNAP-23 in rodent mast cells. Quantitative analysis revealed that approximately 10% of SNAP-23 was phosphorylated when mast cell degranulation was induced. These same residues were phosphorylated when mouse platelet degranulation was induced with thrombin, demonstrating that phosphorylation of SNAP-23 Ser(95) and Ser(120) is not restricted to mast cells. Although triggering exocytosis did not alter the absolute amount of SNAP-23 bound to SNAREs, after stimulation essentially all of the SNAP-23 bound to the plasma membrane SNARE syntaxin 4 and the vesicle SNARE VAMP-2 was phosphorylated. Regulated exocytosis studies revealed that overexpression of SNAP-23 phosphorylation mutants inhibited exocytosis from rat basophilic leukemia mast cells, demonstrating that phosphorylation of SNAP-23 on Ser(120) and Ser(95) modulates regulated exocytosis by mast cells.


Assuntos
Exocitose , Mastócitos/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Animais , Sítios de Ligação , Plaquetas/metabolismo , Linhagem Celular , Proteínas de Membrana/metabolismo , Mutação , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratos , Proteínas SNARE , Serina/metabolismo , Transfecção , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
J Immunol ; 171(10): 5345-52, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14607937

RESUMO

Mast cells possess specialized granules that, upon stimulation of surface FcR with IgE, fuse with the plasma membrane, thereby releasing inflammatory mediators. A family of membrane fusion proteins called SNAREs, which are present on both the granule and the plasma membrane, plays a role in the fusion of these granules with the plasma membrane of mast cells. In addition to the SNAREs themselves, it is likely that the SNARE accessory protein, N-ethylmaleimide-sensitive factor (NSF), affects the composition and structure of the SNARE complex. NSF is a cytoplasmic ATPase that disassembles the SNARE complexes. To investigate the role of NSF in mast cell degranulation, we developed an assay to measure secretion from transiently transfected RBL (rat basophilic leukemia)-2H3 mast cells (a tumor analog of mucosal mast cells). RBL-2H3 cells were cotransfected with a plasmid encoding a human growth hormone secretion reporter along with either wild-type NSF or an NSF mutant that lacks ATPase activity. Human growth hormone was targeted to and released from secretory granules in RBL-2H3 cells, and coexpression with mutant NSF dramatically inhibited regulated exocytosis from the transfected cells. Biochemical analysis of SNARE complexes in these cells revealed that overexpression of the NSF mutant decreased disassembly and resulted in an accumulation of SNARE complexes. These data reveal a role for NSF in mast cell exocytosis and highlight the importance of SNARE disassembly, or priming, in regulated exocytosis from mast cells.


Assuntos
Proteínas de Transporte/fisiologia , Degranulação Celular/fisiologia , Mastócitos/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Transporte Vesicular , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Degranulação Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Etilmaleimida/farmacologia , Exocitose/genética , Exocitose/fisiologia , Genes Reporter , Células HeLa , Humanos , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mastócitos/citologia , Mastócitos/enzimologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Proteínas Sensíveis a N-Etilmaleimida , Processamento de Proteína Pós-Traducional/genética , Proteínas Qa-SNARE , Proteínas R-SNARE , Ratos , Proteínas SNARE , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA